Johns Hopkins researchers to use machine learning to predict heart damage in COVID-19 victims

Johns Hopkins researchers to use machine learning to predict heart damage in COVID-19 victims

Press releases may be edited for formatting or style | May 19, 2020 Artificial Intelligence Cardiology
Newswise — Johns Hopkins researchers recently received a $195,000 Rapid Response Research grant from the National Science Foundation to, using machine learning, identify which COVID-19 patients are at risk of adverse cardiac events such as heart failure, sustained abnormal heartbeats, heart attacks, cardiogenic shock and death.

Increasing evidence of COVID-19’s negative impacts on the cardiovascular system highlights a great need for identifying COVID-19 patients at risk for heart problems, the researchers say. However, no such predictive capabilities currently exist.

“This project will provide clinicians with early warning signs and ensure that resources are allocated to patients with the greatest need,” says Natalia Trayanova, the Murray B. Sachs Professor in the Department of Biomedical Engineering at The Johns Hopkins University Schools of Engineering and Medicine and the project’s principal investigator.

Servicing GE/Siemens Nuclear Medicine equipment with OEM trained engineers

Numed, a well established company in business since 1975 provides a wide range of service options including time & material service, PM only contracts, full service contracts, labor only contracts & system relocation. Call 800 96 Numed for more info.

The first phase of the one-year project, which just received IRB approval for Suburban Hospital and Sibley Memorial Hospital within the Johns Hopkins Health System (JHHS), will collect the following data from more than 300 COVID-19 patients admitted to JHHS: ECG, cardiac-specific laboratory tests, continuously-obtained vital signs like heart rate and oxygen saturation, and imaging data such as CT scans and echocardiography. This data will be used to train the algorithm.

The researchers will then test the algorithm with data from COVID-19 patients with heart injury at JHHS, other nearby hospitals and perhaps some in New York City. The hope is to create a predictive risk score that can determine up to 24 hours ahead of time which patients are at risk of developing adverse cardiac events.

For new patients, the model will perform a baseline prediction that is updated each time new health data becomes available.

As far as the researchers are aware, their approach will be the first to predict COVID-19-related cardiovascular outcomes.

"As a clinician, major knowledge gaps exist in the ideal approach to risk stratify COVID-19 patients for new heart problems that are common and may be life-threatening. These patients have varying clinical presentations and a very unpredictable hospital course," says Allison G. Hays, Associate Professor of Medicine in the Johns Hopkins University School of Medicine’s Division of Cardiology and the project’s clinical collaborator.

"This project aims to help clinicians quickly risk stratify patients using real time clinical data, with the goal of widely disseminating this knowledge to help medical practitioners around the world in their approach to treating and monitoring patients suffering from COVID-19.”

You Must Be Logged In To Post A Comment