Building the first holographic brain ‘atlas’

Building the first holographic brain ‘atlas’

Press releases may be edited for formatting or style | November 08, 2019 Alzheimers/Neurology Health IT Operating Room
A team of researchers, led by Case Western Reserve University scientists and technicians using the Microsoft HoloLens mixed reality platform, has created what is believed to be the first interactive holographic mapping system of the axonal pathways in the human brain.

The project, described by researchers as a “blending of advanced visualization hardware, software development and neuroanatomy data,” is expected to have a wide range of scientific, clinical and educational applications and further a collaborative interaction between neuroanatomists and brain-imaging scientists.

For starters, it almost instantly becomes “the foundation for a new holographic neurosurgical navigation system” for Deep Brain Stimulation (DBS) and is being dubbed ‘HoloDBS’ by the team, said lead researcher Cameron McIntyre, the Tilles-Weidenthal Professor of Biomedical Engineering at the Case Western Reserve University School of Medicine.


Special-Pricing Available on Medical Displays, Patient Monitors, Recorders, Printers, Media, Ultrasound Machines, and Cameras.This includes Top Brands such as SONY, BARCO, NDS, NEC, LG, EDAN, EIZO, ELO, FSN, PANASONIC, MITSUBISHI, OLYMPUS, & WIDE.

“More than 100 clinicians have had a chance to beta test this so far and the excitement around the technology has been exceptional,” McIntyre said, adding that the method is already dramatically advancing scientists’ understanding of the complexities associated with certain, targeted brain surgeries.

The new research incorporates decades of valuable, but disconnected, neural data from dozens of sources and transforms them into a fully three-dimensional and interactive visualization. Users of the technology, including neural engineers, neuroanatomists, neurologists, and neurosurgeons, are able to see both the animated “atlas” of the brain via the HoloLens headset—and the axonal connections in front of them.

“The cool thing about this is that we have been able to integrate decades of neuro-anatomical knowledge into the context of the most modern brain visualization techniques,” McIntyre said. “We’re taking all of that anatomical knowledge and putting it into the hands of users in an entirely new and useful format.

McIntyre worked alongside radiology professor Mark Griswold, who is faculty leader of Microsoft HoloLens education-related initiatives and directs the Interactive Commons, a university-wide entity that aims to help faculty, staff and students use a range of visualization technologies to enhance teaching and research. Griswold also led the team that developed the HoloAnatomy app.

Others on the project included Mikkel Petersen, a postdoctoral fellow in the McIntyre Lab, and world expert neuroanatomists from the University of Rochester, Universite Laval in Quebec City, Quebec, Emory University and the University of Pittsburgh.

You Must Be Logged In To Post A Comment