Tiny lensless endoscope captures 3D images of objects smaller than a cell

Clean Sweep Live Auction on Wed. Sep. 18th. Click to view the full inventory

advertisement

Tiny lensless endoscope captures 3D images of objects smaller than a cell

Press releases may be edited for formatting or style | August 19, 2019 Endoscopy
WASHINGTON — Researchers have developed a new self-calibrating endoscope that produces 3D images of objects smaller than a single cell. Without a lens or any optical, electrical or mechanical components, the tip of the endoscope measures just 200 microns across, about the width of a few human hairs twisted together.

As a minimally invasive tool for imaging features inside living tissues, the extremely thin endoscope could enable a variety of research and medical applications. The research will be presented at the Frontiers in Optics + Laser Science (FIO + LS) conference, held September 15–19 in Washington, D.C., U.S.A.

According to Juergen W. Czarske, Director and C4-Professor at TU Dresden, Germany and lead author on the paper: “The lensless fiber endoscope is approximately the size of a needle, allowing it to have minimally invasive access and high-contrast imaging as well as stimulation with a robust calibration against bending or twisting of the fiber.” The endoscope is likely to be especially useful for optogenetics – research approaches that use light to stimulate cellular activity. It also could prove useful for monitoring cells and tissues during medical procedures as well as for technical inspections.

Servicing GE, Philips and Siemens CT equipment with OEM trained engineers

Numed, a well established company in business since 1975 provides a wide range of service options including time & material service, PM only contracts, full service contracts, labor only contracts & system relocation. Call 800 96 Numed for more info.

A self-calibrating system

Conventional endoscopes use cameras and lights to capture images inside the body. In recent years researchers have developed alternative ways to capture images through optical fibers, eliminating the need for bulky cameras and other bulky components, allowing for significantly thinner endoscopes. Despite their promise, however, these technologies suffer from limitations such as an inability to tolerate temperature fluctuations or bending and twisting of the fiber.

A major hurdle to making these technologies practical is that they require complicated calibration processes, in many cases while the fiber is collecting images. To address this, the researchers added a thin glass plate, just 150 microns thick, to the tip of a coherent fiber bundle, a type of optical fiber that is commonly used in endoscopy applications. The coherent fiber bundle used in the experiment was about 350 microns wide and consisted of 10,000 cores.

When the central fiber core is illuminated, it emits a beam that is reflected back into the fiber bundle and serves as a virtual guide star for measuring how the light is being transmitted, known as the optical transfer function. The optical transfer function provides crucial data the system uses to calibrate itself on the fly.

You Must Be Logged In To Post A Comment