DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
Aktueller Standort:
> This Story

Log in oder Register to rate this News Story
Forward Printable StoryPrint Comment




Artificial Intelligence Homepage

AI tool for Alexa and smart devices detects cardiac arrest in sleeping patients Monitors patients for agonal breathing

Silicon Valley investor paints dire picture for future of radiologists Claims they should no longer exist in a decade

AMA issues recommendations for accountability of AI in healthcare Aid in advancing quadruple aim

Understanding 'data cleaning' in equipment service, and the tools used to do it Acquiring data is only the beginning, insights from AAMI

AI’s role in radiology — past, present, future What will it take to fully integrate machine learning into healthcare?

Startup raises over $6 million for early Alzheimer's detection AI With digital biomarkers, Altoida detects risk long before symptoms appear

Google and Northwestern develop deep learning model for lung cancer detection Performed as well or even better than radiologists

Fujifilm to build new 'smart' facility for endoscope production Will leverage AI and IoT to enhance endoscope production

Boston Children's Hospital teaming with GE Healthcare to develop radiology AI The first focus will reportedly be on brain scans

FDA clears Aidoc AI solution for flagging PE in chest CTs Speeding up the time between scan and diagnosis

Baltimore B evaluated 382 variables
to predict the risk of readmission
for patients at UMMS

New algorithm better predictor of readmission following discharge, says study

by John R. Fischer , Staff Reporter
A new machine learning tool may offer a greater number of variables for better predicting a patient’s risk of readmission following discharge, according to a new study at the University of Maryland School of Medicine (UMSOM).

Developed at the University of Maryland Medical System (UMMS), Baltimore score (B score) is designed to help hospital better predict and manage risk of readmission, which is often due to patient harm and carries expenses.

Story Continues Below Advertisement


Special-Pricing Available on Medical Displays, Patient Monitors, Recorders, Printers, Media, Ultrasound Machines, and Cameras.This includes Top Brands such as SONY, BARCO, NDS, NEC, LG, EDAN, EIZO, ELO, FSN, PANASONIC, MITSUBISHI, OLYMPUS, & WIDE.

"If hospitals can better target time and money in planning for discharge to home, then patients may not have to come back to the hospital, with the harm sometimes associated with hospitals, including risks for infection, falls, delirium and other adverse events," said lead researcher Dr. Daniel Morgan, associate professor of epidemiology and public health at UMSOM, in a statement.

The rate of unplanned readmissions within 30 days following discharge is a benchmark used to grade a hospital’s performance and quality of care. Readmissions occur among almost 20 percent of patients in the U.S. Though frequently preventable, many clinicians are not adequately equipped to identify which patients will be readmitted, with existing readmission risk assessment tools limited in the variables they assess for each patient.

Co-author William Bame, a senior data scientist at UMMS, provided the foundation of the algorithm by designing a neural network that can mine thousands of health data variables in real time and calculate a score to predict the chance of return following discharge.

The experimental B score algorithm was then used to evaluate more than 8,000 possible data variables from Sept. 2014 to Aug. 2016. It was then individualized for each of three UMMS hospitals in different settings, where it analyzed data on more than 14,000 patients to determine the likelihood of readmission. The final model drew from 382 variables, including demographics; lab test results; whether the patient required breathing assistance; body mass index; affiliation with a specific church; marital status; employment; medication usage and substance abuse.

Comparing their findings to actual readmissions at the three hospitals and predictions scored by programs such as the LACE index, the HOSPITAL score, and the Maxim/RightCare score, the researchers found B score was better able to identify those at risk, regardless of different settings. It was also most accurate among patients at highest risk, with those in the top 10 percent of B score risk at discharge holding a 37.5 percent chance of 30-day unplanned readmission, and those in the top five percent B score risk at discharge carrying a 43.1 percent chance.

The researchers and university credit the ability to use machine learning to predict this and other healthcare-related risks to the increased adoption of electronic health records.

"The widespread use of electronic health records has enhanced information flow from all clinicians involved in a patient's treatment," said Dean E. Albert Reece, university executive vice president for medical affairs and the John Z. and Akiko K. Bowers distinguished professor at UMSOM, in a statement. "This study underscores how patient data may also help solve the readmission puzzle and, ultimately, improve the quality of patient care."

The findings were published in the journal, JAMA Network Open.

Artificial Intelligence Homepage

You Must Be Logged In To Post A Comment

Erhöhen Sie Ihren Bekanntheitsgrad
Auktionen + Privatverkäufe
Den besten Preis erzielen
Geräte/Geräteteile kaufen
Den günstigsten Preis finden
Daily News
Die neuesten Nachrichten lesen
Alle DOTmed Benutzer durchsuchen
Ethik auf DOTmed
Unseren Ethik-Standard anzeigen
Gold-Parts Verkäufer-Programm
PH-Anfragen erhalten
Gold Service Dealer-Programm
Anfragen empfangen
Alle Gesundheitsdienstleister-Tools anzeigen
Einen Job suchen
Parts Hunter +EasyPay
Angebote für Geräteteile erhalten
Kürzlich zertifizierte Benutzer anzeigen
Kürzlich zertifizierte Benutzer anzeigen
Kürzlich auf DOTmed bewertet
Kürzlich zertifizierte Benutzer anzeigen
Rental Central
Geräte billiger mieten
Geräte/Geräteteile verkaufen
Das meiste Geld erhalten
Hilfe und Beratung finden
Einfache Angebots-Anfrage
Angebote für Geräte erhalten
Virtuelle Messe
Service für Geräte finden
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to, Inc. Copyright ©2001-2019, Inc.