DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
SEARCH
Aktueller Standort:
>
> This Story


Log in oder Register to rate this News Story
Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

More IT Matters

The non-healthcare industry factors for better patient health 'Value-based care' starts outside the hospital

Improving efficiencies here and now with VR and 3D How one doctor with a passion for engineering aims to improve care

Pixel perfect – A new approach to annotation software Akshay Goel discusses cloud-based deep learning platform, Radlearn.ai

How AI can change radiology practice for the better A conversation with NYU Langone’s Dr. Michael Recht

Bringing a ‘hive mind’ approach to AI in radiology How Stanford Medical University and Unanimous AI are partnering to bring the human element to AI

See All IT Matters  

Artificial Intelligence Homepage

AI tool for Alexa and smart devices detects cardiac arrest in sleeping patients Monitors patients for agonal breathing

Silicon Valley investor paints dire picture for future of radiologists Claims they should no longer exist in a decade

AMA issues recommendations for accountability of AI in healthcare Aid in advancing quadruple aim

New algorithm better predictor of readmission following discharge, says study Final model drew predictions from 382 variables

Understanding 'data cleaning' in equipment service, and the tools used to do it Acquiring data is only the beginning, insights from AAMI

Startup raises over $6 million for early Alzheimer's detection AI With digital biomarkers, Altoida detects risk long before symptoms appear

Fujifilm to build new 'smart' facility for endoscope production Will leverage AI and IoT to enhance endoscope production

Google and Northwestern develop deep learning model for lung cancer detection Performed as well or even better than radiologists

Boston Children's Hospital teaming with GE Healthcare to develop radiology AI The first focus will reportedly be on brain scans

FDA clears Aidoc AI solution for flagging PE in chest CTs Speeding up the time between scan and diagnosis

AI’s role in radiology — past, present, future

by Sean Ruck , Contributing Editor
From the June 2019 issue of DOTmed HealthCare Business News magazine

Artificial Intelligence has been a topic of discussion for some time. Outside of science fiction, the public’s first real-life exposure may have been IBM’s Deep Blue, which defeated chess world champion Gary Kasparov in a match that took place in May of 1997. In recent years, the evolution of AI has resulted in more than just a computer that can play chess really well. Instead, AI is beginning to play a more active role in radiology. To get a better understanding of what’s happening, we spoke with Dr. Keith Dreyer, a well-known expert and presenter on AI and vice chairman of radiology at Massachusetts General Hospital.

Dreyer has spoken about “AI winters,” or times when AI development essentially comes to a standstill. There have been two, but he doesn’t see a third on the horizon. He says there’s low chance for a winter for a couple of reasons. First, algorithms are performing better and with more accuracy than ever before. In other words, AI works this time around. In the past, there simply wasn’t enough data or the computers needed to process the vast amounts of data needed to make AI viable. Which brings us to the second reason — computing power. Today’s machines can handle huge amounts of data and more organizations are able to afford these machines today.

Story Continues Below Advertisement

RaySafe helps you avoid unnecessary radiation

RaySafe solutions are designed to minimize the need for user interaction, bringing unprecedented simplicity & usability to the X-ray room. We're committed to establishing a radiation safety culture wherever technicians & medical staff encounter radiation.



While more organizations are delving into AI, Dreyer says it’s still a technology that hasn’t really penetrated the market. In order to clear that hurdle, questions will need to be answered. Do the algorithms being created work well on all data? How does it improve the workflow? What’s it going to do for the user? How will it make their day better? What’s the tipping point to get payors on board around reimbursement?

On the topic of payors, Dreyer has yet to see any reimbursement that pays for the use of AI in medical imaging above and beyond what would be paid for service provided by humans not using AI. However, he believes that will change. “I think because there’s obviously so much tight scrutiny under payor reform in general, if you look at the process in which payment is determined by the largest payor — the government, with Medicare and Medicaid — they use a committee process where a group of subspecialty physicians determine where the dollars go. So you’d have to show an algorithm is well-worth its value in order for them to create a new code to be reimbursed for it. It’s not something that happens overnight, it has to be proven in the field,” he says.

Although the data required to fuel AI’s algorithms has improved dramatically over the years, there are practical and political constraints still playing a part in tethering its rise to the stratosphere. That’s because the data is locked behind hospital firewalls. Hospitals are still grappling with the process of making that data available in a safe, secure manner to companies making algorithms. Presumably, some are also still struggling with the thought of providing information that could benefit their competitors, even if those benefits extend to all participants.
  Pages: 1 - 2 >>

Artificial Intelligence Homepage


You Must Be Logged In To Post A Comment

E-Mail-Werbung
Erhöhen Sie Ihren Bekanntheitsgrad
Auktionen + Privatverkäufe
Den besten Preis erzielen
Geräte/Geräteteile kaufen
Den günstigsten Preis finden
Daily News
Die neuesten Nachrichten lesen
Übersicht
Alle DOTmed Benutzer durchsuchen
Ethik auf DOTmed
Unseren Ethik-Standard anzeigen
Gold-Parts Verkäufer-Programm
PH-Anfragen erhalten
Gold Service Dealer-Programm
Anfragen empfangen
Gesundheitsdienstleister
Alle Gesundheitsdienstleister-Tools anzeigen
Jobs/Training
Einen Job suchen
Parts Hunter +EasyPay
Angebote für Geräteteile erhalten
Kürzlich zertifizierte Benutzer anzeigen
Kürzlich zertifizierte Benutzer anzeigen
Kürzlich auf DOTmed bewertet
Kürzlich zertifizierte Benutzer anzeigen
Rental Central
Geräte billiger mieten
Geräte/Geräteteile verkaufen
Das meiste Geld erhalten
Servicetechniker
Hilfe und Beratung finden
Einfache Angebots-Anfrage
Angebote für Geräte erhalten
Virtuelle Messe
Service für Geräte finden
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to DOTmed.com, Inc. Copyright ©2001-2019 DOTmed.com, Inc.
ALL RIGHTS RESERVED