DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
SEARCH
Aktueller Standort:
>
> This Story


Log in oder Register to rate this News Story
Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

More Industry Headlines

The 2019 Heart Rhythm Society scientific sessions: advanced technology in electrophysiology Four key takeaways

AI tool matches radiologist in amyloid detection for Alzheimer's Processes entire whole-brain slice with 98.7 percent accuracy

Mild combat-related brain trauma can be detected with magnetoencephalography (MEG) Superior to conventional neuroimaging techniques like MR, CT

The non-healthcare industry factors for better patient health 'Value-based care' starts outside the hospital

Bruker and the Champalimaud Foundation to develop first 18 Tesla UHF MR scanner Enable discovery of new contrast mechanisms

New machine learning algorithm could decide who is best for heart failure treatment Could help prevent sudden death from heart failure

Whole body MR may support faster, less expensive cancer treatment planning A single scan for planning and staging, but challenges remain

Helium shortage could have deflating effect on MR industry Party City cites shortage as contributor to 45 stores closing

Five tips for launching a successful virtual care program Telemedicine is revolutionizing the healthcare landscape

Consolidation, consumerism and telehealth are the top three industry trends for 2019 According to a wide sampling of 1,000 healthcare stakeholders

Image-based AI predicts breast cancer up to five years sooner

by John W. Mitchell , Senior Correspondent
A team of researchers has applied a deep learning algorithm to find early breast cancer based on individual risk-based factors, rather than protocols based on current profiling standards, such as breast density.

The lead radiologist on the team reported that her institution, Massachusetts General Hospital (MGH), plans to begin actively using the deep learning platform to spot breast cancer within the next six months.

Story Continues Below Advertisement

Servicing GE Nuclear Medicine equipment with OEM trained engineers

We offer full service contracts, PM contracts, rapid response, time and material,camera relocation. Nuclear medicine equipment service provider since 1975. Click or call now for more information 800 96 NUMED



“This is very exciting,” Dr. Constance D. Lehman, a member of the research team and professor of Radiology, MGH, told HCB News. “Too many cancers are missed. My colleagues and I have always wanted to be more precise. With an individual risk-based tool we will be able to do that.”

The new AI mammography program was developed as a joint effort between MGH and the Computer Science and Artificial Intelligence Laboratory (CSAIL) at the Massachusetts Institute of Technology (MIT). The program included nearly 90,000 mammograms conducted on almost 40,000 women. It was automatically run in the background with routine mammography, according to Lehman.

“Understanding who is at risk of developing breast cancer is a key component of earlier detection and better outcomes," explained Adam Yala, lead author and Ph.D. student at MIT. "By understanding who is at risk, we can personalize how often patients are screened and with what modality to catch their cancer as early as possible.”

According to the authors, current breast cancer protocols are driven mainly by human knowledge and intuition on markers sometimes weakly correlated with breast cancer, especially at the individual level. For example, most current protocols are based on study of Caucasian populations, which does not serve women of other races well. Black women are 42 percent more likely to die from breast cancer, according to MIT.

Also, Lehman said that under recent federal guidelines radiologists are required to provide women information on their breast density. Half of all women have dense breasts. But, she said, such information tends to be confusing to patients.

The new AI program can detect cancer patterns too subtle for the human eye to detect on a mammogram up to five years sooner. Early breast cancer detection is associated with better survival rates and lower treatment costs. The researchers also noted that the same basic programs could also eventually be used to predict other disease states in women, such as cardiovascular disorders or other cancers.

“Since the 1960s radiologists have noticed that women have unique and widely variable patterns of breast tissue visible on the mammogram,” said Lehman. “These patterns can represent the influence of genetics, hormones, pregnancy, lactation, diet, weight loss, and weight gain. We can now leverage this detailed information to be more precise in our risk assessment at the individual level.”

A widely accepted AI application could help dispel a long-standing disagreement in medicine around screening. Although mammography has been shown to reduce breast cancer mortality, there is continued debate on how often to screen and when to start. While the American Cancer Society recommends annual screening starting at age 45, the U.S. Preventative Task Force recommends screening every two years beginning at age 50. Further, as reported last week in HCB News, the American Society of Breast Surgeons issued yet another standard for screening guidelines.

Related:


You Must Be Logged In To Post A Comment

Werben
Erhöhen Sie Ihren Bekanntheitsgrad
Auktionen + Privatverkäufe
Den besten Preis erzielen
Geräte/Geräteteile kaufen
Den günstigsten Preis finden
Daily News
Die neuesten Nachrichten lesen
Übersicht
Alle DOTmed Benutzer durchsuchen
Ethik auf DOTmed
Unseren Ethik-Standard anzeigen
Gold-Parts Verkäufer-Programm
PH-Anfragen erhalten
Gold Service Dealer-Programm
Anfragen empfangen
Gesundheitsdienstleister
Alle Gesundheitsdienstleister-Tools anzeigen
Jobs/Training
Einen Job suchen
Parts Hunter +EasyPay
Angebote für Geräteteile erhalten
Kürzlich zertifiziert
Kürzlich zertifizierte Benutzer anzeigen
Kürzlich bewertet
Kürzlich zertifizierte Benutzer anzeigen
Rental Central
Geräte billiger mieten
Geräte/Geräteteile verkaufen
Das meiste Geld erhalten
Service-Techniker Forum
Hilfe und Beratung finden
Einfache Angebots-Anfrage
Angebote für Geräte erhalten
Virtuelle Messe
Service für Geräte finden
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to DOTmed.com, Inc. Copyright ©2001-2019 DOTmed.com, Inc.
ALL RIGHTS RESERVED