DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
SEARCH
Aktueller Standort:
>
> This Story


Log in oder Register to rate this News Story
Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

Rad Oncology Homepage

Varian acquires CyberHeart, enters cardiac radioablation market Emerging technology could benefit treatment of irregular heartbeats

New 12-year study highlights value of PRRT, based on long-term outcomes Understanding peptide receptor radionuclide therapy

RefleXion Medical secures $60 million for approval and launch of BgRT system Can detect and treat multiple tumors in the same session

Korean cancer center aims to deploy heavy ion therapy in 2022 Plans also call for the onboarding of more CR and MR systems

Radiation oncologists appeal to Congress to safeguard radiotherapy treatment Protecting cancer patients' access to value-based care

Using ERISA to end proton therapy denials Insights from Timothy J. Rozelle and Lisa S. Kantor, from Kantor & Kantor, LLP on getting insurers to provide coverage

Philips unveils IntelliSpace Radiation Oncology system at ESTRO Manages complexity and efficiency of radiology departments

Elekta sues ZAP Surgical Systems, claiming patent infringement Over design and sale of ZAP's radiosurgery platform

Studies unveil measures for reducing resistance to radiotherapy in tumors Stimulates immune system to attack cancer cells

Fivefold difference found in Medicaid reimbursements for radiotherapy May limit access to healthcare, especially in rural areas

A new chip-on-a-organ technology creates
3D models for which different types and
levels of radiation can be tested on

Aussies and Americans develop 3D models for assessing impacts of radiotherapy

by John R. Fischer , Staff Reporter
Australian and American researchers have developed a new technology that could see a reduction, if not elimination, of the side effects associated with radiotherapy.

The organ-on-a-chip solution enables users to develop 3D models that act as subjects for which different levels and types of radiation can be tested to inquire about their individual impacts. It takes the form of a microfluidic cell culture chip that closely mimics the structure and function of small blood vessels within a disposable device that enables clinicians to examine the effects of treatment on body tissues.

Story Continues Below Advertisement

Free Marketplace where Lenders Compete Get Pre-Approved for up to $500,000

Get financing today. We say YES more! Easy, Fast, Application. Pick the payment that best works for you. Tax Benefits + Leasing = Huge Savings! NEVER BE OBSOLETE. NO DOWN PAYMENT. FIXED MONTHLY PAYMENT. MRI, CT, Ultrasound, Digital X-ray, Dental Equipment



"The human microvasculature (blood vessel systems within organs) is particularly sensitive to radiotherapy and the model used in this study could potentially lead to more effective therapies with fewer side effects for cancer patients," said UniSA biomedical engineer, professor Benjamin Thierry, in a statement.

Side effects of radiotherapy can often be brutal and sometimes lead to acute organ failure and long-term cardiovascular disease.

Scientists investigating such impacts currently rely on two-dimensional environments on a slide, hindered by major limitations stemming from the use of animals as test subjects and irrelevant in vitro work that is required.

The organ-on-a-chip technology, however, is expected to reduce reliance on these components, and provide researchers with a better understanding of the impact that radiation has on blood vessels, and at a future point, on all other sensitive organs.

"Better understanding the effect of radiotherapy on blood vessels within organs – and more generally on healthy tissues – is important, especially where extremely high doses and types of radiation are used," said UniSA FII professor Dr. Chih-Tsung Yang in a statement.

The team consisted of researchers from UniSA, Royal Adelaide Hospital and Harvard University’s Dana-Farber Cancer Institute. Support was provided by the Australian National Fabrication Facility.

The next step in their work is to develop body-on-chip models that mimic organs relevant to specific types of cancer.

The findings were published in Advanced Materials Technologies.

Rad Oncology Homepage


You Must Be Logged In To Post A Comment

Werben
Erhöhen Sie Ihren Bekanntheitsgrad
Auktionen + Privatverkäufe
Den besten Preis erzielen
Geräte/Geräteteile kaufen
Den günstigsten Preis finden
Daily News
Die neuesten Nachrichten lesen
Übersicht
Alle DOTmed Benutzer durchsuchen
Ethik auf DOTmed
Unseren Ethik-Standard anzeigen
Gold-Parts Verkäufer-Programm
PH-Anfragen erhalten
Gold Service Dealer-Programm
Anfragen empfangen
Gesundheitsdienstleister
Alle Gesundheitsdienstleister-Tools anzeigen
Jobs/Training
Einen Job suchen
Parts Hunter +EasyPay
Angebote für Geräteteile erhalten
Kürzlich zertifiziert
Kürzlich zertifizierte Benutzer anzeigen
Kürzlich bewertet
Kürzlich zertifizierte Benutzer anzeigen
Rental Central
Geräte billiger mieten
Geräte/Geräteteile verkaufen
Das meiste Geld erhalten
Service-Techniker Forum
Hilfe und Beratung finden
Einfache Angebots-Anfrage
Angebote für Geräte erhalten
Virtuelle Messe
Service für Geräte finden
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to DOTmed.com, Inc. Copyright ©2001-2019 DOTmed.com, Inc.
ALL RIGHTS RESERVED