DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
SEARCH
Aktueller Standort:
>
> This Story


Log in oder Register to rate this News Story
Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

CT Homepage

MR method could spare patients with skull lesions from CT, says study Could benefit children and pregnant women

FDA clears GE’s AI-based CT image reconstruction technology Available as upgrade to Revolution Apex scanner

First ultra high-res CT scan performed on US patient Scanner at UC Davis can image anatomy as small as 150 microns

Industrial hi-res X-ray yields greater insight into child abuse case Identified microscopic injuries that would not have been detected with standard CT

Trice Imaging connects imaging devices of large chain healthcare provider Aleris Patients and physicians can view images on laptops, cell phones

Reducing extravasations in CT contrast-enhanced IV injections Tips and best practices for administering better care

Researchers orchestrate malware attack to expose imaging vulnerabilities Deceived radiologists and AI algorithms into misdiagnoses

House bill would require Medicare to cover CT colonography Supporters say it would improve screening compliance and outcomes

New approach identifies lung cancer patients most likely to respond to chemotherapy Combines radiomics and CT image assessment

BSWH to install Glassbeam's CLEAN blueprint to leverage machine uptime Will include integrated CMMS software by EQ2

A new technique promises to cut down
the rate of false positives in lung
cancer diagnoses, without missing
a single case of cancer

Machine learning reduces false positives for lung cancer in low-dose CT

by John R. Fischer , Staff Reporter
While the standard diagnostic test for early detection of lung cancer in those at high-risk, low-dose CT produces false positives at a rate of 96 percent. That may soon change with a new technique developed at the University of Pittsburgh and UPMC Hillman Cancer Center.

Using machine learning, researchers were able to reduce false positives while still identifying every case that carried a malignancy, a feat they claim is the first example in which AI has been used to differentiate benign from cancerous nodules in lung cancer screenings.

Story Continues Below Advertisement

RaySafe helps you avoid unnecessary radiation

RaySafe solutions are designed to minimize the need for user interaction, bringing unprecedented simplicity & usability to the X-ray room. We're committed to establishing a radiation safety culture wherever technicians & medical staff encounter radiation.



"This concept is the wave of the future in clinical decision-making for indeterminant lung nodules, and will hopefully include a blood test or something similar in the near future," senior author David Wilson, associate professor of medicine, cardiothoracic surgery and clinical and translational science at Pitt and co-director of the Lung Cancer Center at UPMC Hillman, told HCB News.

Shadows indicating the presence of nodules appear on a quarter of screenings throughout the U.S., but only four percent are actually cancerous. Scans alone cannot indicate who falls into this category, making clinicians hesitant to rule out cancer and leading to greater anxiety among patients as they undergo more costly, additional tests that can carry risks.

Feeding the data of 218 high-risk patients at UPMC into a machine learning algorithm, researchers constructed a model to calculate the probability of cancer. The model relied on the number of blood vessels surrounding the nodule, the number of nodules, and the numbers of years since the patient quit smoking as its most important factors, ruling out cancer if its probability fell below a certain threshold.

"These three features carry the most information about cancer status [of] all other variables," study coauthor Panayiotis (Takis) Benos, professor and vice chair of computational and systems biology and associate director of the Integrative Systems Biology Program at the University of Pittsburgh, told HCB News. "Also the information in each of them is complementary to the other two. Cancer typically needs more energy, so increased vasculature around a nodule has been correlated with cancer. Also the more years since [the subject] quit smoking, the less likely the module is cancerous."

Confirmation as to whether the patients had benign nodules or lung cancer was made later and compared to the model’s assessment. The comparison showed that 30 percent of those with benign nodules could have been spared additional testing, without missing a single case of cancer.

The researchers plan to examine the technique in a larger group. That study, involving 6,000 scans from the National Lung Screening Trial, is currently underway.

The findings were published in the journal, Thorax.

CT Homepage


You Must Be Logged In To Post A Comment

Werben
Erhöhen Sie Ihren Bekanntheitsgrad
Auktionen + Privatverkäufe
Den besten Preis erzielen
Geräte/Geräteteile kaufen
Den günstigsten Preis finden
Daily News
Die neuesten Nachrichten lesen
Übersicht
Alle DOTmed Benutzer durchsuchen
Ethik auf DOTmed
Unseren Ethik-Standard anzeigen
Gold-Parts Verkäufer-Programm
PH-Anfragen erhalten
Gold Service Dealer-Programm
Anfragen empfangen
Gesundheitsdienstleister
Alle Gesundheitsdienstleister-Tools anzeigen
Jobs/Training
Einen Job suchen
Parts Hunter +EasyPay
Angebote für Geräteteile erhalten
Kürzlich zertifiziert
Kürzlich zertifizierte Benutzer anzeigen
Kürzlich bewertet
Kürzlich zertifizierte Benutzer anzeigen
Rental Central
Geräte billiger mieten
Geräte/Geräteteile verkaufen
Das meiste Geld erhalten
Service-Techniker Forum
Hilfe und Beratung finden
Einfache Angebots-Anfrage
Angebote für Geräte erhalten
Virtuelle Messe
Service für Geräte finden
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to DOTmed.com, Inc. Copyright ©2001-2019 DOTmed.com, Inc.
ALL RIGHTS RESERVED