Pixel perfect – A new approach to annotation software

Clean Sweep Live Auction on Thur. Dec. 12th. Click to view the full inventory

Pixel perfect – A new approach to annotation software

by Sean Ruck, Contributing Editor | March 12, 2019
From the March 2019 issue of HealthCare Business News magazine

At the conclusion of the Society for Imaging Informatics in Medicine’s 2018 conference, Dr. Akshay Goel and his team were awarded the Innovation Challenge grand prize. SIIM picked Goel’s project, “Radlearn.ai – A Cloud-Based Deep Learning Annotation-to-Analysis Platform” from among eight semi-finalists. HealthCare Business News reached out to Dr. Goel to learn about the potential SIIM saw in his project and to find out what the future holds and how the work he’s doing may better-serve imaging efforts in the future.

Goel started programming as a freshman in high school. In college, at Carnegie Mellon University, he was interested in pursuing medical school but maintained his love of computer science. “I took classes in biomedical engineering but decided to major in computer science after my strong natural engagement toward the programming assignments in our Data Structures and Algorithms course,” he said.

After his third year of medical school, Goel did a research year at UT Southwestern, sponsored by the Doris Duke Charitable Foundation, focusing on a tech-heavy project. His project was automatically computing aortic stiffness from cardiac MRIs in the Dallas Heart Study, and his experience meshed the two passions. Having just completed his third year of medical school, the project helped to cement his love of technology and medicine further. Years later, he found himself holding a novelty-sized check for a very real $10,000 in front of a SIIM crowd.

THE (LEADER) IN MEDICAL IMAGING TECHNOLOGY SINCE 1982. SALES-SERVICE-REPAIR

Special-Pricing Available on Medical Displays, Patient Monitors, Recorders, Printers, Media, Ultrasound Machines, and Cameras.This includes Top Brands such as SONY, BARCO, NDS, NEC, LG, EDAN, EIZO, ELO, FSN, PANASONIC, MITSUBISHI, OLYMPUS, & WIDE.

The inspiration for his platform, which he named Radlearn.ai, came from a very basic approach – speaking and observing radiology researchers. “A lot of people I spoke to were annotating radiology data in a way that felt tedious and inefficient. Some were even complaining about the process! At the time I couldn’t find a tool that solved this problem, so that’s how I got interested.”

Goel created a prototype that could manage the entire annotation process much more efficiently. He also continued his original approach of speaking with other researchers about their workflow, to understand their annotation process: from opening the study, finding a tool, setting up parameters for a tool, marking an annotation, and saving the result. “Every step adds up very quickly. People I observed had to complete a tedious 10-step process to annotate a single study. When you multiply that by hundreds of studies, you realize how time-consuming it can be,” he said.

Within five or six months, he had a highly functional prototype of his Radlearn.ai concept, far enough along to win the SIIM Innovation Challenge – a contest he didn’t initially even have in mind. What makes his accomplishments to-date even more impressive is that he developed the program with a small team of three developers in the beginning, and one designer later in the process. “I was fortunate to have recently organized a development team for a tutoring website called Medlearnity. It made the prospect of getting this project off the ground more feasible”, he said.

You Must Be Logged In To Post A Comment