DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
Aktueller Standort:
> This Story

Log in oder Register to rate this News Story
Forward Printable StoryPrint Comment




Rad Oncology Homepage

FDA okays Philips' MR-only radiotherapy simulator, MRCAT pelvis Create treatment plans for bladder, rectal, anal and cervical cancer

Japanese startup to develop ultra-compact proton therapy system Designed to replace conventional radiotherapy systems

Varian to acquire Cancer Treatment Services International for $283 million Enables production of multidisciplinary solutions

Varian acquires CyberHeart, enters cardiac radioablation market Emerging technology could benefit treatment of irregular heartbeats

New 12-year study highlights value of PRRT, based on long-term outcomes Understanding peptide receptor radionuclide therapy

Korean cancer center aims to deploy heavy ion therapy in 2022 Plans also call for the onboarding of more CR and MR systems

RefleXion Medical secures $60 million for approval and launch of BgRT system Can detect and treat multiple tumors in the same session

Radiation oncologists appeal to Congress to safeguard radiotherapy treatment Protecting cancer patients' access to value-based care

Using ERISA to end proton therapy denials Insights from Timothy J. Rozelle and Lisa S. Kantor, from Kantor & Kantor, LLP on getting insurers to provide coverage

Philips unveils IntelliSpace Radiation Oncology system at ESTRO Manages complexity and efficiency of radiology departments

Four considerations before embarking on a carbon therapy center

From the March 2019 issue of DOTmed HealthCare Business News magazine

By Erik Mollo-Christensen

Carbon, otherwise known as heavy ion or hadron, therapy is the next generation of particle therapy in the U.S.
Originally developed in the U.S. in the 1970s, carbon therapy technology offers higher energy treatment and effectiveness against some tumor types and conditions, as well as shorter treatment courses with fewer fractions and patient visits than proton therapy.

Story Continues Below Advertisement


Special-Pricing Available on Medical Displays, Patient Monitors, Recorders, Printers, Media, Ultrasound Machines, and Cameras.This includes Top Brands such as SONY, BARCO, NDS, NEC, LG, EDAN, EIZO, ELO, FSN, PANASONIC, MITSUBISHI, OLYMPUS, & WIDE.

As part of the continuing development and improvements to cancer treatment, it’s no surprise that healthcare providers are seeking to refine and advance treatment methods in radiation oncology. There are more than 70 operating particle therapy centers worldwide, including 12 international carbon facilities. Another 40 proton and 5 carbon projects are under construction. In addition to these facilities, several premier domestic institutions are considering carbon facilities to bring heavy ion treatment to the U.S.

The primary characteristic and benefit of carbon therapy results from the greater mass of the particles. Proton therapy uses hydrogen atoms, whereas particles from heavier elements (carbon, helium) have more mass and therefore more kinetic energy. This results in greater damage to cancer cells, and — considering the tighter deposition pattern and smaller margins — reduced harm to healthy cells. This also accumulates the prescribed doses in fewer fractions (typically 10-12 for carbon) and decreases the length of the treatment course for the patient.

While carbon therapy presents great opportunities in the fight against cancer, the advanced technology and equipment brings a new level of consideration in site and facility planning for owners contemplating a project. In Stantec’s decades of focused practice guiding planning and design of particle therapy facilities, we have learned that there are several factors healthcare providers must consider when implementing new treatment technology like carbon therapy to ensure the success of a facility.

Generally, there are four key factors to consider prior to exploring the feasibility of a carbon therapy facility. They include:
• Equipment characteristics
• Planning, architecture, and facility design
• Engineering design considerations
• Cost and construction

Equipment characteristics
Before considering the design of a carbon therapy facility, it’s important to understand equipment components and operations, along with the resulting impacts on project planning and design.
  Pages: 1 - 2 - 3 - 4 - ... >>

Rad Oncology Homepage

You Must Be Logged In To Post A Comment

Erhöhen Sie Ihren Bekanntheitsgrad
Auktionen + Privatverkäufe
Den besten Preis erzielen
Geräte/Geräteteile kaufen
Den günstigsten Preis finden
Daily News
Die neuesten Nachrichten lesen
Alle DOTmed Benutzer durchsuchen
Ethik auf DOTmed
Unseren Ethik-Standard anzeigen
Gold-Parts Verkäufer-Programm
PH-Anfragen erhalten
Gold Service Dealer-Programm
Anfragen empfangen
Alle Gesundheitsdienstleister-Tools anzeigen
Einen Job suchen
Parts Hunter +EasyPay
Angebote für Geräteteile erhalten
Kürzlich zertifiziert
Kürzlich zertifizierte Benutzer anzeigen
Kürzlich bewertet
Kürzlich zertifizierte Benutzer anzeigen
Rental Central
Geräte billiger mieten
Geräte/Geräteteile verkaufen
Das meiste Geld erhalten
Service-Techniker Forum
Hilfe und Beratung finden
Einfache Angebots-Anfrage
Angebote für Geräte erhalten
Virtuelle Messe
Service für Geräte finden
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to, Inc. Copyright ©2001-2019, Inc.