DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
SEARCH
Aktueller Standort:
>
> This Story


Log in oder Register to rate this News Story
Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

CT Homepage

FDA okays Philips' MR-only radiotherapy simulator, MRCAT pelvis Create treatment plans for bladder, rectal, anal and cervical cancer

Study calls for better factoring-in of patient complexity in head CT scans Should consider complexity of associated billed patient encounters

Study shows 30 percent drop in unnecessary head CTs with BrainScope One May help ensure appropriate use of imaging

MR method could spare patients with skull lesions from CT, says study Could benefit children and pregnant women

FDA clears GE’s AI-based CT image reconstruction technology Available as upgrade to Revolution Apex scanner

First ultra high-res CT scan performed on US patient Scanner at UC Davis can image anatomy as small as 150 microns

Industrial hi-res X-ray yields greater insight into child abuse case Identified microscopic injuries that would not have been detected with standard CT

Trice Imaging connects imaging devices of large chain healthcare provider Aleris Patients and physicians can view images on laptops, cell phones

Reducing extravasations in CT contrast-enhanced IV injections Tips and best practices for administering better care

Researchers orchestrate malware attack to expose imaging vulnerabilities Deceived radiologists and AI algorithms into misdiagnoses

Courtesy: James Weaver and Ahmed
Hosny/Wyss Institute

MIT research yields more efficient anatomical 3D printing

by Thomas Dworetzky , Contributing Reporter
How about spending minutes, not hours, tuning CT and MR scan data for 3D models of a patient's anatomy?

When MIT Media Lab's Steven Keating, Ph.D., then a 26-year-old grad student at its Mediated Matter group, found he had a brain tumor, now safely removed, he grew curious to see his own brain before his surgery to better understand what he had and the therapy options he faced.

Story Continues Below Advertisement

THE (LEADER) IN MEDICAL IMAGING TECHNOLOGY SINCE 1982. SALES-SERVICE-REPAIR

Special-Pricing Available on Medical Displays, Patient Monitors, Recorders, Printers, Media, Ultrasound Machines, and Cameras.This includes Top Brands such as SONY, BARCO, NDS, NEC, LG, EDAN, EIZO, ELO, FSN, PANASONIC, MITSUBISHI, OLYMPUS, & WIDE.



He collected all his scans and tried to prepare them for printing, but grew frustrated with the tools at his disposal, which were cumbersome and inaccurate.

So he reached out to his lab colleagues, who were researching new ways to print 3D models of biological samples.

"It never occurred to us to use this approach for human anatomy until Steve came to us and said, 'Guys, here's my data, what can we do?'" says Ahmed Hosny, who was a Research Fellow at the Wyss Institute at the time and is now a machine learning engineer at the Dana-Farber Cancer Institute.

A loose collaboration followed, including scientists at Wyss, as well as researchers and physicians at centers in the U.S. and Germany, that has now developed a novel technique to easily and quickly convert medical images into models with heretofore unattained detail, they reported in the journal 3D Printing and Additive Manufacturing.

"I nearly jumped out of my chair when I saw what this technology is able to do," recalled co-author Dr. Beth Ripley, assistant professor of radiology at the University of Washington and clinical radiologist at the Seattle VA. "It creates exquisitely detailed 3D-printed medical models with a fraction of the manual labor currently required, making 3D printing more accessible to the medical field as a tool for research and diagnosis."

The problem is that the volumes of data from imaging like MR and CT are loaded with so much detail that the points of interest can get lost. This requires that you highlight the things you want to see to distinguish it from surrounding tissue – a very time-intensive process called "segmentation" in which a radiologist must actually trace the objects of interest on every single slice, by hand.

The alternative is automatic "thresholding", in which a computer converts grayscale pixels into either solid black or solid white pixels, depending on a specified “threshold” between black and white.

Unfortunately, since medical data has many ill-defined borders between objects, both computers and hand methods tend to over- or under-exaggerate features and lose vital details.
  Pages: 1 - 2 - 3 >>

CT Homepage


You Must Be Logged In To Post A Comment

Werben
Erhöhen Sie Ihren Bekanntheitsgrad
Auktionen + Privatverkäufe
Den besten Preis erzielen
Geräte/Geräteteile kaufen
Den günstigsten Preis finden
Daily News
Die neuesten Nachrichten lesen
Übersicht
Alle DOTmed Benutzer durchsuchen
Ethik auf DOTmed
Unseren Ethik-Standard anzeigen
Gold-Parts Verkäufer-Programm
PH-Anfragen erhalten
Gold Service Dealer-Programm
Anfragen empfangen
Gesundheitsdienstleister
Alle Gesundheitsdienstleister-Tools anzeigen
Jobs/Training
Einen Job suchen
Parts Hunter +EasyPay
Angebote für Geräteteile erhalten
Kürzlich zertifiziert
Kürzlich zertifizierte Benutzer anzeigen
Kürzlich bewertet
Kürzlich zertifizierte Benutzer anzeigen
Rental Central
Geräte billiger mieten
Geräte/Geräteteile verkaufen
Das meiste Geld erhalten
Service-Techniker Forum
Hilfe und Beratung finden
Einfache Angebots-Anfrage
Angebote für Geräte erhalten
Virtuelle Messe
Service für Geräte finden
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to DOTmed.com, Inc. Copyright ©2001-2019 DOTmed.com, Inc.
ALL RIGHTS RESERVED