Over 900 Cleansweep Auctions End Tomorrow 05/02 - Bid Now
Over 800 Total Lots Up For Auction at Four Locations - TX 05/03, TX 05/06, NJ 05/08, WA 05/09

Celsion highlights potentially curative approach to treatment of primary liver cancer

Press releases may be edited for formatting or style | June 22, 2016

The primary endpoint for the OPTIMA Study is overall survival (OS). The statistical plan calls for two interim efficacy analyses by an independent Data Monitoring Committee (iDMC). The design of the OPTIMA Study is supported by the retrospective analysis of a large subgroup of 285 patients in the Company's previous 701 patient HEAT Study in primary liver cancer. The study is also designed to establish a clear path to approval in major liver cancer markets worldwide, with results from the OPTIMA Study, if successful, providing the basis for a global registration filing and marketing approval.

About LTLD (ThermoDox®)
Celsion's most advanced program is a heat-mediated, tumor-targeting drug delivery technology that employs a novel heat-sensitive liposome engineered to address a range of difficult-to-treat cancers. The first application of this platform is ThermoDox®, a lyso-thermosensitive liposomal doxorubicin (LTLD), whose novel mechanism of action delivers high concentrations of doxorubicin to a region targeted with the application of localized heat at 40°C, just above body temperature. In one of its most advanced applications, LTLD, when combined with radiofrequency thermal ablation (RFA), has the potential to address a range of cancers. For example, RFA in combination with ThermoDox® has been shown to expand the "treatment zone" with a margin of highly concentrated chemotherapy when treating individual primary liver cancer lesions. The goal of this application is to significantly improve efficacy.

Celsion's LTLD technology leverages two mechanisms of tumor biology to deliver higher concentrations of drug directly to the tumor site. The first: Rapidly growing tumors have leaky vasculature, which is permeable to liposomes and enables their accumulation within tumors. Leaky vasculature influences a number of factors within the tumor, including the access of therapeutic agents to tumor cells. Administered intravenously, LTLD is engineered with a half-life to allow significant accumulation of liposomes at the tumor site as these liposomes recirculate in the blood stream. The second: When an external heating device heats the tumor tissue to a temperature of 40°C or greater, the heat-sensitive liposome rapidly changes structure and the liposomal membrane selectively dissolves, creating openings that release the chemotherapeutic agent directly into the tumor and into the surrounding vasculature. Drug concentration increases as a function of the accumulation of liposomes at the tumor site, but only where the heat is present. This method damages only the tumor and the area related to tumor invasion, supporting precise drug targeting.

About Celsion Corporation
Celsion is a fully-integrated oncology company focused on developing a portfolio of innovative cancer treatments, including directed chemotherapies, immunotherapies and RNA- or DNA-based therapies. The Company's lead program is ThermoDox®, a proprietary heat-activated liposomal encapsulation of doxorubicin, currently in Phase III development for the treatment of primary liver cancer and in Phase II development for the treatment of recurrent chest wall breast cancer. The pipeline also includes GEN-1, a DNA-based immunotherapy for the localized treatment of ovarian and brain cancers. Celsion has two platform technologies for the development of novel nucleic acid-based immunotherapies and other anticancer DNA or RNA therapies, including TheraPlas™ and TheraSilence™. For more information on Celsion, visit our website: http://www.celsion.com. (CLSN-TD CLSN-HS CLSN-OS)

Back to HCB News

You Must Be Logged In To Post A Comment